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a b s t r a c t

In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt
identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are
prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid,
hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The
performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers
and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal,
heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target
aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro
extraction gas chromatography mass spectrometer (SPME-GC–MS). The hexanoic acid and octanoic acid
imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the
propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid
imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary
mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been
processed with principal component analysis (PCA) for visual, and support vector machine (SVM)
classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in
principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes
of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human body odor comprised numerous chemical components,
for example, saturated and unsaturated acids, aldehydes, alcohols,
ketones, hydrocarbons, amines, other nitrogen, and sulfur com-
pounds, etc. [1–11]. The skin glands release sweat which is further
intensified with the oxidation, and metabolism by characteristic
bacteria, causing body odor. The composition of chemical compo-
nents in body odor is perturbed by various factors such as parts of
body (axilla, face, foot, scalp, groin, etc.) [2], genetic attributes [3],
age [2], gender [4], diseases [5], living pattern and food [6],
environmental conditions [7], and many more. Though, it has
been established in several studies that each individual holds a
characteristic body odor. This is the main motivation behind the
growing interest in body odor studies and its practical relevance in

medical [8], security and safety [9], biometric [10], and cosmetics
domains [11], etc.

Saturated and unsaturated aldehydes (C3-C11) are amongst the
main established chemical components of human body odor, and
documented in numerous studies [12–19]. It is found in body odor
samples collected from skin odor [12–14], axillary sweat [15],
breath odor [16], scalp and head odor, [17,18], feet odor [19], etc.
Haze et al. [12] have noticed the presence of several saturated
aldehydes such as hexanal, heptanal, octanal, nonanal, decanal,
and unsaturated aldehyde (2-nonenal) in skin odor originated
from oxidation of non saturated fatty acids. Authors have estab-
lished 2-nonenal as the ageing biomarker chemical in body odor.
Bernier et al. [13,14] have also confirmed the existence of short
chain aldehydes (hexanal, heptanal, octanal, nonanal, decanal, and
undecanal) along with other chemicals in skin odor analysis. Munk
et al. [15] have found 4-heptenal, octanal, 2-nonenal, 2, 6-non-
adienal, 2, 4-nonadienal, 2, 4-decadienal, etc. as primary chemical
components in washed clothes containing axillary sweat odor.
Martinez-Lozano [16] et al. have reported the presence of alde-
hydes besides other chemical components in breath odor analysis.
Goetz et al. [17] have identified aldehydes as well other volatile
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organic compounds in analysis of scalp and hair odor. Kubota et al.
[18] have also recognized valeraldehyde and heptanal in head odor
analysis. Dormont et al. [19] have investigated the volatile chemi-
cals in feet odor and confirmed the existence of aldehydes such as
hexanal, octanal, nonanal, decanal, undecanal, and tridecanal, etc.

Analytical methods have been widely used for characterization
and in determination of quantitative as well qualitative chemical
composition of body odor such as: headspace gas chromatography-
mass spectrometer (HS-GC–MS) [12,17,18], thermal desorption
(TD)-GC–MS [13,14], high resolution (HR)-GC–MS [15], atmospheric
pressure ionization mass spectrometer (API-MS) [16], solid-phase
micro-extraction (SPME)-GC–MS [19–22], GC with flame photo-
metric detection (FPD) [23], GC Fourier transform infrared spectro-
scopy (FTIR) [24], etc. It is evident from the literature survey that
GC–MS is the most efficient and extensively used analytical method
for body odor research. Earlier methods are capable in laboratory
based examinations; however there are certain factors (large size,
long technical process and analysis time, cost, etc.) which restrain
their outside applicability. These restrictions result the need of a
device that can be used for real-time assessment of body odor. Since
last few years, chemical sensors including metal oxide semicon-
ductor (MOS), fluorescent imaging (FI), quartz crystal microbalance
(QCM), conducting polymer composite (CPC), and surface acoustic
wave (SAW), etc are being researched for the recognition of volatile
organic chemicals (VOCs) in body odor [8, 20, 22, 25–28]. Though,
currently limited research reports are available in literature based
on application of chemical sensors for body odor evaluation. Multi-
farious combination of VOCs in body odor, low vapor pressure, and
occurrence of external interfering chemicals necessitate the devel-
opment of fast and reversible, highly sensitive, selective, and stable
chemical sensors in body odor analysis. This is the main motivation
behind the present study.

Compared to other chemical sensors, QCM is a simple, low cost,
small size, and highly sensitive gravimetric sensor based on
piezoelectric effect. A chemo selective layer is coated for vapor
sorption over the surface of QCM resonator. Its frequency change is
found in proportion to the mass loading according to Sauerbrey
equation [29]. Application of QCM sensor array in food quality
assessment, medical and drug discovery, forensic and for the
development of biomemetic system, biosensors, etc have been
reported in literature [30–32]. Though at present scenario, there is
a need for further improvement in selectivity, reproducibility,
signal to noise ratio and diminishment in drift, and complications
of manufacturing process of QCM sensor [33]. Amongst these
selectivity is one of the key factors for the successful real time
operation, which is determined by the coating material over QCM
surface. Several research groups are working for the development
of novel selective materials by using polymers, nano-materials, gas
chromatographic stationary phases, ionic liquids, bio-materials,
etc and its optimal selection [27, 31–36]. Besides these, recently a
new technique for the development of highly chemo selective
polymer as surface coating material of QCM sensor has been
invented, named as molecular imprinting (MI) [31, 37–42]. MI is
the most effective technique for increasing the selectivity of
polymer in which artificial cavities are formed inside the original
polymer matrix by adding target or other chemical molecules with
some cross linker. After that target molecules are removed from
the host polymer matrix by simple (heating, washing. etc.) or
using special chemical protocol. This procedure generates target
molecules specific non-covalent binding sites inside the host
polymer. Patterned host polymer is referred as molecular
imprinted polymer (MIP). It combines the high selectivity feature
of polymer and sensitivity of QCM resonator when coated
over surface. The MIP coated QCM sensor is employed for real
time sensing applications [38–42]. Percival et al. [38] have
prepared MIP using the monomer methaacrylic acid (MAA) and

cross-linkers ethylene glycol dimethacrylate (EDMA) and tri-
methylolpropane trimethacrylate (TRIM). Prepared MIP is coated
over QCM surface for detection of terpenes (sensitivity 200 ppb) in
liquid phase. Matsuguchi et al. [39] have developed MIP coated
QCM sensors (high response time 60 min) for the detection of
toluene and p-xylene. MIP is prepared with target molecules,
methyl methacrylate monomer using cross-linking polymerization
method. Some latest studies based on MIP-QCM sensors are as
follows: Gultekin et al. [40] have proposed methacrylamido-
antipyrine-iron (III) [MAAP-Fe(III)] as metal-chelating monomer
based MIP for the identification of caffeic acid found in plants
(detection limit 7.8 nM); Bakas et al. [41] have employed acryla-
mide based MIP for the removal of fenthion insecticide from olive
oil (detection limit 5 mgL�1); Yola et al. [42] have used tobramycin
(TOB) imprinted poly (2-hydroxyethyl methacrylate–methacryloy-
lamidoglutamic acid) based QCM sensor for the determination of
TOB in food samples (milk, chicken, egg, etc.).

Although in last few years, MIP-QCM sensors have been
employed for chemical vapor sensing in several applications, we
hardly noticed any report for the detection of aldehyde odors
(which is amongst the major chemical components of body odor)
in single, binary, and tertiary mixture. Present study is succession
of our earlier research [22] based on polyacrylic acid (PAA) and
three template molecules: propenoic acid, hexanoic acid, and
octanoic acid based MIP coated QCM sensor array for the identi-
fication of organic acids in single and binary mixtures. We have
employed similar MIPs in present study as used in [22] for coating
of three QCM sensors also an additional QCM is included as
reference (coated with non-MIP PAA). The organic acids are highly
polar chemical compounds due to strongly polarized carbonyl
(C¼O) and hydroxyl (O-H) groups. Consequently they easily
interact through strong hydrogen bonding with alike molecules
capable in h-bonding with greater strength than other organic
compounds such as aldehydes, alcohols, amines ketones, esters,
etc. This is the reason for selecting organic acids as template
molecules in MIPs formation for aldehydes target molecules
detection. Another objective is to develop PAA-MIP-QCM sensor
array capable for the detection of chemicals from multiple func-
tional groups such as acids, aldehydes, alcohols, etc Four element
QCM sensor array was exposed to three target chemicals: hexanal,
heptanal, nonanal, and their binary and tertiary mixtures at
distinct concentrations. The dynamic response of sensors was
measured for assessment of response time, sensitivity and repeat-
ability. Also the static sensor array response was processed with
principal component analysis (PCA) for symbolic recognition of
odors in feature space and support vector machine (SVM) classifier
for quantitative identification. Target aldehydes were selected
after confirming their presence in body odor samples. For that
purpose body odor samples are characterized using SPME-GC–MS
method.

2. Experimental

2.1. GC/MS characterization of body odor

We have obtained consent from the Clinical Trials Committee of
Department of Electrical Engineering, Kyushu University, Japan for
human body odor detection experiments. Body odor samples were
collected from the two persons (male and female). Cotton pads
were used to collect the body odor samples from different parts of
body including the left and right axilla, and left and right foot. The
samples were collected in two different conditions of body:
(a) working condition in day (sampling time 4 h), and (b) in
relaxing condition of body in night (sampling time 8 h). In this
way, total sixteen samples were collected (2 person�4 body
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parts�2 conditions). After sample collection each of the cotton
pads were cut into four parts resulting sixty four samples. In which
each of the sixteen samples were analyzed with the GC–MS at the
interval of a day, with objective to examine the change in body
odor composition, due to the bacterial activity. Cotton pads were
capped in cleaned glass vials and stored at fix temperature (38 1C).
Previous to GC–MS analysis, each of the samples was encapsulated
in SPME cells. CAR/DVB on PDMS fiber was used (temperature
70 1C, and heating time 30 min) to vaporize the odor molecules.
GC–MS (Shimadzu QP2010, Japan) was used to characterize the
composition of body odor (analysis time 55 min).

2.2. Chemicals and instruments

Hexanal, heptanal, nonanal, propenoic acid, hexanoic acid, octa-
noic acid, ethanol, hydrochloric acid, PAA polymer, and other
chemicals were purchased from Sigma Aldrich, Japan, and they were
utilized without further refinement. Structure of host polymer and
three target chemicals are given in Fig. 1(a)-(d) respectively. Four
quartz crystals (9 MHz AT-cut) fixed between Au electrodes pur-
chased from Seiko EG & G, Japan were used for sensing purpose. The
variation in frequency Δfð Þof QCM due to mass loading after chemical
vapor exposure can be determined by Sauerbrey relation [29]

Δf ¼ �2f 2oΔm
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ� ρÞ

p ð1Þ

where f 0 is the fundamental resonant frequency of quartz crystal,
andμ is the shear modulus of quartz, ρ is the density of quartz, and A
is the gold electrode coated area of QCM. Four cylindrical crystal
holders were used to fix the QCM sensors with a common sensing
chamber. Holders were also connected with the QCM analyzer (QCA-
922) purchased from Seiko EG & G, Japan to read out the sensor
response. The response of QCM sensors was recorded in CF-R4
computer using WinQCM software for further analysis.

2.3. MIP films preparation and coating

We have prepared three MIP films using the following proce-
dures: (I) 250 mg of PAA was dissolved in 5 ml of ethanol in three
different tubular glass vials; (II) 10 mL of template molecules
(propenoic acid, hexanoic acid, and octanoic acid) were injected
using micro-syringe purchased from Nichipet Ex, Japan in three
solutions respectively; (III) Finally 25 mL of hydrochloric acid was
added in each solution. Thereafter each solution was stirred for 6 h
constantly. The prepared PAA-MIPs were dropped (5 ml of each) on
one side of QCMs surface, subsequently using the spin coating
method (coating time 30 s at 500 rpm). Coating thickness is
calculated using the mass loading of QCM and Eq. (1). It is of
few hundred nm also validated by Mirmohseni et al. [43] under

similar coating conditions. One QCM is coated with pure PAA, that
is, non-MIP for reference. After that, four QCMs were dried inside a
vacuum oven for 24 h at 40 1C. It assists in dislodging template
molecules from the host polymer and to dry the MIP layer.
Schematic diagram and real pictures of MIP-QCM sensing system
are given in Figs. 2–3.

2.4. Vapor generation and response measurement of sensors

Pyrex glass bottles of 100 ml cleaned with inert nitrogen and
connected with 100% gas tight microfluidic cap were used for vapor
generation and collection of aldehydes odor. Aldehyde liquid was
dropped over a cotton paper (of size 20� 12 cm) inside the glass bottle
using micro-syringe. The glass bottle is connected with the two Teflon
tubes, first for way in of diluting gas (pure dry air), and second for
passage of generated target vapors (Figs. 2 and 3). Target aldehyde
odors were generated by passing pure dry air for 15 s in glass bottle.
QCM sensors are highly sensitive for humidity, which can influence its
sensing. Effect of humidity can be reduced either in sensing system
with proper selection of coating material, or during response proces-
sing. For instance, Sun et al. [44] have developed polypyrrole coated
QCM sensor for low humidity sensing; artificial neural network (ANN)
method is used for drift compensation due to humidity by Mumyak-
maz et al. [45]. In present research the effect of humidity was reduced
by using the clean dry air as dilution gas during the odor generation,
using inert nitrogen for cleaning the odor collecting glass bottles. As
well the preprocessing methods and PCA for data processing reduce
the noise content in sensor signal due to humidity and other
interferents. Air is passed though mixture of carbon molecular sieve
(adsorb humidity) and activated carbon (filter other odor molecules)
inside a glass chamber to produce clean dry air (Fig. 2). Total 18
different concentrations of single aldehyde odor were generated by
injecting target liquid 5–30 mL (5 mL in each steps) on the cotton paper
placed inside the glass bottle. This process results six concentrations of
each aldehydes odor. Beside the single aldehyde odor, we have also
generated the blend odor using the binary and tertiary mixtures of
three aldehydes. With the three feasible combinations of binary
mixtures of aldehydes (hexanalþheptanal, heptanalþnonanal, and
hexanalþnonanal) total 108 concentrations (36 for each binary
mixture) were generated. For instance 36 binary odors for mixture
of hexanal and heptanal were produced by injecting the distinct
amount of two aldehydes in glass bottle, in following steps: (I) 5 mL of
hexanal and 5–30 mL of heptanal (5 mL in each step), (II) 10 mL of
hexanal and 5–30 mL of heptanal, (III) 15 mL of hexanal and 5–30 mL of
heptanal, (IV) 20 mL of hexanal and 5–30 mL of heptanal, (V) 25 mL of
hexanal and 5–30 mL of heptanal, and (VI) 30 mL of hexanal and 5–
30 mL of heptanal. Each step produces six different concentrations of
binary odor. The tertiary mixture of aldehydes (hexanalþheptanalþ
nonanal) odor were generated in subsequent ways: (I) 5 mL of
hexanalþ5 mL of heptanal and 5–30 mL of nonanal (5 mL in each step,
this generates six different concentrations), (II) 5 mL of hexanalþ5 mL
of nonanal and 10–30 mL of heptanal (5 mL in each step, this generates
five different concentrations), (III) 5 mL of heptanalþ5 mL of nonanal
and 10–30 mL of hexanal (5 mL in each step, this generates five different
concentrations). Thus total 16 concentrations of tertiary odor were
generated. The generated concentrations were exposed to the 4-
element QCM sensor array inside the sensing chamber for response
measurement. QCM sensor array response was measured for 18
distinct vapor concentrations of single aldehyde odor, 108 concentra-
tions of binary odors, and 16 concentrations of tertiary odors. The
exposure time for target odors was set to 15 s and baseline response of
sensor was achieved by passing pure dry air for next 15 s. Response of
each sensor was measured for 90 s (3 response cycles). Fig. 4(a)-
(d) represent the response of non MIP-PAA (S1), propenoic acid
template based PAA-MIP (S2), hexanoic acid template based PAA-
MIP (S3), and octanoic acid template based PAA-MIP coated QCM

Fig. 1. Chemical structures of (a) polyacrylic acid (PAA) polymer, (b) hexanal,
(c) heptanal, and (d) nonanal.
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sensors (S4) to the nonanal vapors (5 mL in sampling vial) respectively.
Response of four sensors to binary mixture of hexanal and nonanal
(5þ5 mL) is given in Fig. 5 (a)-(d). Fig. 6 (a)-(d) present the response of
four sensors to the tertiary mixture of hexanalþheptanalþnonanal
(5þ5þ5 mL).

The steady sensor response was defined as Δf ¼ f b� f v
� �

using
the transient sensor signal (Figs. 4–6). To reduce the noise effects
due to fluctuations in transient sensor signal, baseline frequency
f b
� �

was defined as average frequency of QCM in between 1th-15th

s; similarly frequency due to vapor adsorption f v
� �

was defined as
average frequency of QCM in between 16th-30th s in first measure-
ment cycle. According to the types of odor (single, binary, and
tertiary), three dynamic sensor array response matrices were
defined using the transient sensor signal in first measurement
cycle: (a) for single aldehyde Fs 18�4ð Þ (response of 4 sensors to 18
concentrations), (b) for binary mixtures of aldehyde Fb 108�4ð Þ
(response of 4 sensors to 108 concentrations), and (c) for tertiary
mixture of aldehyde Ft 16�4ð Þ (response of 4 sensors to 16

Fig. 2. Schematic diagram of 4-element QCM sensor array based odor recognition system.

Fig. 3. Real set up of 4-element QCM sensor array.
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concentrations). The transient sensor response for IInd and IIIrd
cycles was not used in data analysis, due to low value of
reproducibility (high baseline drift).

2.5. Sensors response processing methods

2.5.1. Pre-processing
In the first step of data processing in which each of the dynamic

sensor array response matrices defined in earlier section was
preprocessed with the logarithmic scaling followed by the auto-
scaling [46,47]. Preprocessing assists in reducing noise content as
well impact of sensor on analysis outcomes. Logarithmic scaling
was implemented on sensor array response matrix as: F’ log Fð Þ.
Subsequent to logarithmic scaling, autoscaling was implemented
in two steps: mean centering followed by the variance normal-
ization along the sensors.

2.5.2. PCA
Next sensor array response was processed with the unsuper-

vised linear feature extraction method PCA. Basically, it is a
transformation of sensors response from measurement space to
feature space with objective to minimize the correlation amongst
the sensors response and maximize the variance. After that
sensors response was projected along the principal axes having
higher eigenvalues, to visualize the odors in two or three dimen-
sional principal component (PC) space as well to reduce the noise
content by discarding the PC directions of lower variance. In

present study there are four sensors, we discarded the fourth PC
direction and used scores for first three PC directions for qualita-
tive identification of odors in PC space and further quantitative
identification by SVM classifier. Complete mathematical descrip-
tion of PCA method can be seen in [48,49]. The ‘stats’ package [50]
of open source language ‘R’ was used in PCA analysis.

2.5.3. SVM
In last stage of sensors response processing, SVM classifier was

employed using the PC scores as input to predict the class of odor
(single, binary, or tertiary). It is a supervised classification method,
proposed by Vapnik [51], and reviewed in [52]. Class identification
is executed in two steps: training followed by validation. Multi-
class SVM is an elaborated form of binary class SVM, in which an
ideal partitioning hyperplane was formulated using the training
data set, thereafter a class opinion function was decided on the
basis of hyperplane equation. Quadratic programming (QP) is used
to maximize the interclass margin which is measured using the
data points nearby hyperplane (support vectors). Kernel functions
were used in QP to reduce computation time and complexity. In
multiclass identification, the training data set was divided into
different groups of binary classes and SVM is trained with each. To
decide class of unknown sample, first it is classified with each of
the binary class trained SVM, then final class is decided on the
basis of majority voting. SVM was implemented using the ‘e1071’
package [53] of ‘R’ program. Analysis flow chart for sensors
response processing is given in Fig. 7.

Fig. 4. Response of QCM (a) sensor (S1), (b) sensor (S2), (c) sensor (S3) and (d) sensor (S4) to nonanal vapors (5 mL in glass bottle).
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3. Results and discussions

3.1. Body odor characterization result

Fig. 8 presents the characteristic GC–MS spectra for right male
axilla odor in resting condition of body on first day. For body odor
composition assessment 50 peaks from the GS-MS spectra were
selected. Four saturated aldehydes: haexanal, heptanal, nonanal, and
decanal as well two unsaturated branched aldehydes: 2-nonenal and
lilial (butyl phenyl methyl-propional) were identified in GC–MS
spectra of body odor. Amongst these nonanal (peak no. 14) has
highest peak area 5.15% and height 7.61%. For rest of the aldehydes
the peak area and height values are: 1.7% and 0.98% for hexanal (peak
no. 25), 0.51% and 0.49% for heptanal (peak no. 44), 3.87% and 5.42%
for decanal (peak no. 47), 0.61% and 0.85% for 2-nonenal (peak no.
49), and 0.64% and 0.71% for lilial (peak no. 49) respectively. Both the
saturated and unsaturated aldehydes were identified amongst the
major chemical components of body odor samples collected from
axilla, foot of male and female in rest condition of body (Table 1).
Consequently, they can be used as biomarker chemical in body odor
recognition and differentiation. Besides the aldehydes other chemical
components were also identified in body odor samples such as:
diethyl phthalate (peak no. 46) area 10.74%, height 13.17%, 3-hydroxy,
2-butanone (peak no. 10) peak area 5.81%, height 5.02%, 6-methyl,
5-hepten-2-one (peak no. 12) area 2.82%, height 3.74%, acetic acid
(peak no. 15) area 12.16%, height 7.18%, 2-methyl-butanoic acid (peak
no. 29) area 9.79%, height 5.97%, oxacyclohexadecaone (peak no. 46)
area 1.13%, height 1.82%, etc.

3.2. Sensor array response analysis to single aldehyde odors

Passing aldehyde odor to the sensor chamber causes chemical
vapor sorption in polymer layer over the QCM surface, and hence due
to mass change an effective frequency change is observed. The vapor
sorption in chemoselective polymer layer over the QCM surface is
due to some basic non-covalent interactions including (i) the hydro-
gen bonding between -CHO group of aldehydes and -COOH group
PAA polymer as represented in Fig. 9(a)-(c), (ii) dipole-dipole inter-
actions, and (iii) Van der walls interactions. Hydrogen bonding is the
established interaction amongst other possible interactions which
causes reproducibility characteristics of QCM sensors response to
aldehyde odors. Each QCM sensors responds well to the aldehyde
odor, though the average sensors response to the nonanal vapors is
greater than the heptanal and hexanal vapors (Table 2). Moreover the
sensors response to heptanal vapors is greater than the hexanal
vapors. Performance of sensors pursue the sequential order: hex-
anoic acid template MIP based sensor S3 is better than propenoic
acid template MIP based sensor S2 followed by non-MIP based
sensor S1 and octanoic acid template MIP based sensor S4 (Fig. 4(a)-
(d)). This is due to the size effect of donors and accepters on the
strength of hydrogen bonds between the target aldehyde molecules
and MIPs (Fig. 9). Large size of octanoic acid template compared to
other template molecules is responsible for weaker hydrogen bond-
ing between the MIPs and target aldehyde molecules and hence low
response of sensor (S4). Low vapor pressure of nonanal (0.53 mm Hg
at 25 0C) compares to heptanal (3.84 mm Hg at 25 1C) and hexanal
(11.3 mm Hg at 25 1C) does not influence the MIP-QCM sensors

Fig. 5. Response of QCM (a) sensor (S1), (b) sensor (S2), (c) sensor (S3), and (d) sensor (S4) to binary mixture of hexanal and nonanal (5þ5 mL in glass bottle).
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response to the target aldehyde molecules [54]. Though, the impact
of vapor pressure on sensor response was observed in our earlier
study [22]. Performance of sensors was evaluated on the basis of
sensitivity, baseline drift, and response time. The response time of
sensors for single, binary, and tertiary mixtures of aldehyde is
discussed separately in last section 3.6. The sensitivity of sensor is

defined as: S¼ Δf =Δm, where Δf is the frequency change due to
vapor sorption, and Δm is the mass loading due adsorbed target
vapors. Assuming equivalent mass loading of sensors (due to similar
amount of MIP coating over QCM surface and alike chemical behavior
of three target aldehydes), sensitivity can be redefined as:
S¼ c� Δf ¼ c � f b� f v

� �
, where c¼ 1=Δm, f b is the baseline

Fig. 6. Response of QCM (a) sensor (S1), (b) sensor (S2), (c) sensor (S3), and (d) sensor (S4) to tertiary mixture of hexanal, heptanal and nonanal (5þ5þ5 mL in glass bottle).

Fig. 7. Sensor array response analysis flow chart.
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frequency of QCM, and f v is the frequency after the vapor sorption.
Sensitivity of sensors was computed using their transient response in
Ist measurement cycle.

The baseline drift of sensor is defined as: d¼ f b1� f b2
� �

, where
f b1, and f b2 are frequencies of QCM sensor in Ist and IInd
measurement cycles respectively in absence of target chemical

Fig. 8. GC–MS spectra of body odor.

Table 1
Aldehydes identified in GC–MS spectra of human body odor samples.

Sample
source

Detected aldehydes
Peak
number

Peak area
(in %)

Peak height
(in %)

Female left
axilla

Hexanal 10 3.75 2.19
Heptanal 15 0.73 0.81
Octanal 19 4.94 3.39
Nonanal 22 8.90 12.1
Decanal 28 4.93 6.61
2-Nonenal 31 0.87 1.35

Female right
axilla

Hexanal 3 4.32 9.51
Heptanal 6 0.88 5.13
Nonanal 15 6.85 2.89
Decanal 21 3.55 2.95
2-Octenal 39 0.45 0.33

Female left
foot

Hexanal 5 1.50 0.91
Heptanal 9 0.75 0.58
Octanal 13 2.56 2.15
Nonanal 18 8.32 11.6
Decanal 23 3.40 4.62

Female right
foot

Hexanal 15 0.43 0.25
Decanal 28 0.97 2.53
Undecanal 31 0.27 0.30

Male left
axilla

Hexanal 2 2.00 1.20
Nonanal 13 6.62 8.38
Decanal 19 5.10 6.22
Undecanal 26 0.34 0.46
Lilial 40 0.56 0.49

Male right
axilla

Hexanal 3 1.70 0.98
Heptanal 6 0.51 0.49
Nonanal 14 5.15 7.61
Decanal 17 3.87 5.42
2-Nonenal 19 0.61 0.85
Lilial 39 0.64 0.71

Male left foot
Hexanal 2 1.32 0.93
Nonanal 12 7.55 10.0
Decanal 18 3.09 4.57

Male right
foot

Hexanal 2 3.92 7.81
Heptanal 5 1.17 4.59
Nonanal 14 10.2 2.74
Decanal 21 4.36 2.74
2-Nonenal 24 0.93 1.21
2-Undecenal 37 0.26 2.43
2-Methyl-3-phenyl-
propanal

39 0.67 0.67

Fig. 9. The presumed interaction between polyacrylic acid (PAA) and target
chemicals: (a) hexanal, (b) heptanal and (c) nonanal.

Table 2
Average response of sensors to single, binary, and tertiary mixtures of aldehydes.

Single aldehyde odor

Vapor type Sensor number

S1 S2 S3 S4

Hexanal 2.83 7.00 12.66 7.33
Heptanal 13.5 18.33 21.83 8.66
Nonanal 28.5 36.33 41.83 13.66
Binary aldehyde odor
HexanalþHeptanal 20.58 26.55 31.36 20.72
HeptanalþNonanal 34.94 47.08 45.72 19.97
HexanalþNonanal 33.22 42.08 43.75 18.30
Tertiary aldehyde odor
Tertiary odor type-1 25.5 37.5 29.99 10.66
Tertiary odor type-2 27.8 42.0 39.00 13.2
Tertiary odor type-3 23.8 34.6 30.40 12.6

nNote: sensors response are in Hz,Tertiary odor type-1 is mixture of
hexanal¼5mLþheptanal¼5mLþnonanal¼5-30 mL (5mL in each steps),Tertiary odor
type-2 is mixture of hexanal¼5mLþnonanal¼5mLþheptanal¼10-30 mL (5mL in each
steps),Tertiary odor type-3 is mixture of heptanal¼5mLþnonanal¼5mLþhexanal¼10-
30 mL (5mL in each steps).
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vapor. The sensitivity values of sensors S1-S4 to nonanal vapor
(5 mL in glass bottle) are S¼ 49c, 71c, 69c, 46cHz/mg using the
average value of f b, and f v respectively. The sensitivity value of
sensors S1-S4 using the maximum value off b, and f v respectively
to nonanal vapor are S¼ 77c,121:3c,107:3c, 83cHz/mg (Fig. 4(a)-
(d)). These calculated values indicate the highest sensitivity of
sensor S2 followed by S3, S1 and S4 to nonanal vapor. The baseline
drift values are d¼ 15, 18:3, 12:8, 1:4Hz for sensors S1-S4
respectively. The sensor S3 has baseline drift lower than the
sensors S1 and S2. Though the minimum baseline drift is obtained
for the sensor S4, which may be due to its lowest sensitivity.

PCA analysis results of sensor array response matrix Fs 18�4ð Þ is
shown in Figs. 10(c), and 10(d) in PC 1�2, and PC 1�3 spaces
respectively. The three target aldehyde odors are well identified
in PC 1�2 space (Fig. 10(c)), except one sample from the hexanal
is placed outside its cluster. The partition between the heptanal
and nonanal cluster becomes more apparent in PC 1�3 space
(Fig. 10 (d)). Figs. 10(a) and 10(b) represent the location of three
aldehyde odors in PC 1�2 and PC 1�3 spaces respectively,
excluding the response of sensor S1 from analysis. It results
misclassification of two nonanal samples (identified to heptanal
cluster) in PC 1�2 space (Fig. 10(a)). In PC 1�3 space misclassi-
fication increases to five, in which one sample of hexanal is
assigned to the heptanal and one sample to nonanal clusters, as
well three samples of heptanal is assigned to nonanal cluster
(Fig. 10 (b)). Thus PCA analysis including response of all the four

sensors result 100% visual identification of single aldehyde odor
in PC space.

3.3. Sensor array response analysis to binary mixtures of
aldehyde odors

Average sensors response to three binary mixtures of aldehyde
odors were summarized in Table 2. It is evident that the sensors
response to binary mixture of heptanalþnonanal is highest fol-
lowed by hexanalþnonanal, and hexanalþheptanal. The higher
sensor response to first two binary mixtures compared to last one is
due to the presence of nonanal in combination. Since all the sensors
have maximum response to nonanal vapors. Performance order of
sensors to all the three binary mixtures of aldehyde odors almost
follow the similar trend as in case of single aldehyde odor, that is,
S3>S2>S1>S4 (Fig. 5(a)-(d)). Sensitivities of sensors S1-S4 to
binary mixture of hexanalþnonanal (5þ5 mL in glass bottle) are
S¼ 68c, 77c, 70c, 44cHz/mg using the average and S¼ 96:6c, 129:3c,
102:9c, 83:5cHz/mg using the maximum values of f b, and f v
respectively (Fig. 5(a)-(d)). The values point out the following
sensitivity trends of sensors to the binary mixture of hexa-
nalþnonanal S3>S2>S1>S4. Baseline drift values for sensors
(S1-S4) are d¼ 21:1,21:3,9:6, 2:3Hz respectively. Thus baseline
drift of sensors are corresponding to the sensors sensitivity to the
binary mixtures of aldehyde odor. The sensor S3 has low value of
baseline drift compare to sensors S1 and S2, while sensor S4 has its

Fig. 10. Representation of single aldehydes odor in PC space by QCM sensor array response analysis (excluding sensor-1) in (a) PC 1-PC 2 (b) PC 1-PC 3 directions, and
(including sensor-1) in (c) PC 1-PC 2 and (d) PC 1-PC 3 directions.
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minimum value. Figs. 11(a)-(d) represent PCA analysis outcomes of
sensor array response matrix Fm 108�4ð Þ, in which Figs. 11 (c), and 11
(d) demonstrate the location of three binary mixtures of aldehyde
odors in PC 1�2, and PC 1�3 spaces respectively. There is a clear
separation between two classes of binary mixtures: hexa-
nalþheptanal, and heptanalþnonanal while the third binary mix-
ture hexanalþnonanal is overlapping with the two other classes of
binary mixtures in PC 1�2 space (Fig. 11(c)). The clusters of three
classes of binary mixtures further compressed and overlapping
increases in PC 1�3 space (Fig. 11(d)). The PC scores plot excluding
the response of sensor S1 from analysis is shown in Fig. 11(a) and
(b). Compare to Fig. 11(c) the separation between the two classes of
binary mixtures: hexanalþheptanal, and heptanalþnonanal
becomes more apparent as well the few samples from the third
binary mixture hexanalþnonanal are visible in PC 1�2 space
(Fig. 11(a)). A slight improvement in between class separation of
three binary classes can be seen in PC 1�3 space (Fig. 11(b)),
compare to Fig. 11(d). Therefore on the basis of visual discrimination
of binary mixture of aldehyde odor, it is clear that the response
analysis of three MIP-QCM sensors is more effective in odor
recognition. By including the response of non-MIP, the class
recognition of binary odor decreases in PC space. To validate this
point further SVM classifier is implemented for analysis of PC score
matrices PCm 108�3ð Þand PCm 108�4ð Þof original sensor array response

matrices Fm 108�3ð Þ, and Fm 108�4ð Þ (excluding the response of
sensor S1).

For SVM analysis each of PC score matrices were divided into
two sets: training and validation set. 2/3rd of scores (72 samples)
were used in training of and remaining 1/3rd of scores (36
samples) were used for SVM model validation. The SVM model
was tuned for kernel functions (linear, polynomial, sigmoid and
radial basis) and their allied parameters. Radial basis kernel
function based SVM model with γ ¼ 0:5and default value of other
parameters result optimum classification in training phase of SVM
classifier, same model is used for validation. A 3-fold cross
validation approach is adopted to avoid the overtraining and
impact of samples on SVM classification outcomes. In this
approach SVM model is trained and validated with the three
different sets of 72 and 36 PC scores respectively. The class
confusion matrix for SVM classifier based on response of three
sensors and four sensors are summarized in Table 3. The sub-
matrices represent the classification results in Ist, IInd and IIIrd
fold of cross validation respectively, in which the three columns
stand for the binary mixture of hexanalþheptanal, hepta-
nalþnonanal, and hexanalþnonanal respectively. The emphasized
cells in each of the sub-matrices signify the number of binary
aldehyde odor correctly recognized to their respective class. Using
the PC scores of PCm 108�3ð Þ in Ist fold of cross validation, there is

Fig. 11. Representation of binary mixture of aldehydes in PC space by QCM sensor array response analysis (excluding sensor-1) in (a) PC 1-PC 2 (b) PC 1-PC 3 directions, and
(including sensor-1) in (c) PC 1-PC 2, and (d) PC 1-PC 3 directions.
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confusion amongst the three binary mixtures of aldehyde odors.
Three samples from the Ist binary mixture (hexanalþheptanal) are
identified to the IInd binary mixture (heptanalþnonanal); three
samples from the IInd binary mixture are identified to IIIrd binary
mixture (hexanalþnonanal); and three samples from the IIIrd
binary mixture are identified to Ist binary mixture. Thus total 27
binary odors are exactly identified to their own class (identifica-
tion rate 75%). In IInd fold the class confusion increase 13, that is,
total 24 binary odors are identified correctly (recognition rate
66.67%). In IIIrd fold of cross validation 19 binary odors are
recognized correctly (recognition rate 52.77%). Therefore the
maximum class recognition rate achieved is 75%. Using the PC
scores ofPCm 108�4ð Þ, in Ist fold of SVM classification, total 24 odors
are identified out of 36 (recognition rate 66.67%). In IInd and IIIrd
Fold total 24 and 14 odors are correctly identified out of 36
respectively. Therefore including the response of all four sensors
the maximum class recognition rate is only 66.67%. The SVM
classification results (Table 3) and PCA results (Fig. 11(a)-(d))
indicate that the three MIP-QCM sensors are more efficient in
recognition of binary mixtures of aldehyde odors, including the
response of non-MIP-QCM increases misclassification.

3.4. Sensor array response analysis to tertiary mixture of aldehyde
odors

The average value of sensors response to three tertiary mixtures
of aldehyde odors were given in Table 2. It is obvious that the
maximum sensors response is obtained for the tertiary odor type-2
(hexanal¼5 mLþnonanal¼5 mLþheptanal¼10-30 mL (5 mL in each
steps)). The sensors response for other two tertiary mixtures: type-
1 (hexanal¼5 mLþheptanal¼5 mLþnonanal¼5-30 mL (5 mL in each
steps)), and type-3 (heptanal¼5 mLþnonanal¼5 mLþhexanal¼10-
30 mL (5 mL in each steps)) are almost comparable (Table 2). Sensi-
tivity of sensors S1-S4 to tertiary mixture of hexanal, heptanal and,
nonanal (5þ5þ5 mL in sampling vial) are S¼ 32c, 46c, 39c, 18cHz/
mg computed from the average values f b, and f v of and S¼ 42:7c,
66:7c, 66c, 40cHz/mg using the maximum values of f b, and f v
respectively (Fig. 6(a)-(d)). The following sensitivity trend is obtained
to the earlier tertiary mixture of hexanal, heptanal and, nonanal
(5þ5þ5 mL) S3 ffiS24S14S4. The computed values of baseline
drift for sensors S1-S4 to earlier concentration ared¼ 5:7,10:3,2:8,

1:2Hz respectively. The values of baseline drift are in according with
the sensitivity of sensors. As the baseline drift of sensor S3 has lower
value than the sensors S1 and S2. Minimum value of baseline drift is
obtained for the sensor S4. Figs. 12(a)-(d) present PCA analysis results
of sensor array response matrix Ft 16�4ð Þ. Figs. 12(c) and 12(d) exhibit
the position of three tertiary mixtures of aldehyde odors in PC 1�2
and PC 1�3 spaces respectively. There is a clear partition between
two classes of tertiary mixtures type-1 and type-2, third tertiary
mixture type-3 is overlapping with the rest two tertiary mixture
types in PC 1�2 space (Fig. 12(c)). Two odor samples are misclassi-
fied as well three are laying outside the clusters. The compactness of
odor clusters increases in PC 1�3 space (Fig. 12(d)). Four odor
samples are misclassified and five are lying outside the clusters.
Fig. 12(a) presents the tertiary odors in PC 1�2 space excluding the
response of sensor S1 from analysis. In this case two odor samples
are misclassified and three are lying outside the cluster. This result is
similar to the PC score plot in Fig. 12(c). Likewise representation of
tertiary odor in PC 1�3 space excluding the response of sensor S1
from analysis is shown in Fig. 12(b) in which four odor samples are
misclassified and five are laying outside the odor clusters. This result
is identical to the PC score plot in Fig. 12(d). Consequently, the PC
score plots shown in Fig. 12(a)-(d) conclude that there is no
improvement in visual class recognition of tertiary odors in PC spaces
after including the response of non-MIP-QCM sensor in analysis.
Sensors response decreases between subsequent exposures to sam-
ple vapours (Figs. 4–6). This is due to decrease in exposed chemical
vapor concentration in subsequent cycles. Since as time passes, the
vapor concentration of target chemical in sampling glass vial
decrease.

3.5. Combined analysis of sensor array response to single, binary,
and tertiary mixtures of aldehyde odors

To recognize the single, binary, and tertiary aldehyde odors
simultaneously in presence of each other, the three sensors
response matrices Fs 18�4ð Þ, Fb 108�4ð Þ and Ft 16�4ð Þ were combined
and used for further analysis with the PCA and SVM methods.
Figs. 13(a)–(d) exhibit the PCA analysis outcomes of combined
sensors response matrix. The position of single aldehyde odor,
three classes of binary mixtures of aldehyde odors, and tertiary
mixture of aldehyde odors using the response analysis of three

Table 3
SVM classification results for three classes of binary mixture of aldehydes.

QCM sensor array response analysis

Using response of three sensors (S2, S3, S4) Using response of four sensors (S1, S2, S3, S4)
Ist fold Ist fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True class 9 0 3
27

True class 7 0 5
0 9 3 1 8 4 24
0 3 9 0 3 9

IInd fold IInd fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True Class 11 0 1
24

True Class 11 0 1
1 5 7 0 5 7 24
3 1 8 3 1 8

IIIrd fold IIIrd fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True Class 12 0 0
19

True Class 12 0 0
0 2 10 0 1 11 14
1 6 5 5 6 1
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MIP-QCM sensors is shown in Fig. 13(c). It is evident that except
the binary odor type-3 (hexanalþnonanal), rest four odor classes
are partially overlapping, however a complete separation is
observed between the single and tertiary odor classes, single
and binary odor type-2 (heptanalþnonanal), binary odor type-1
(hexanalþheptanal) and type-2, and binary odor type-1 and
tertiary odor. Including the response of non-MIP QCM sensor,
the PCA analysis result is shown in Fig. 13(d). On the basis of
visual inspection, it is clear that the overlapping increases
amongst the binary odor type-1, type-2, and the tertiary odor
compare to Fig. 13(c). Thus including the response of non-MIP
QCM sensor in analysis is not appropriate. Further the three
binary mixtures classes of aldehyde odor are combined together
in one class, after that the sensors response matrix is analyzed
and PCA outcomes are shown in Fig. 13(a) excluding the response
of non-MIP QCM sensor, and in Fig. 13(b) after including the
response of non-MIP QCM sensor. Compare to Fig. 13(b) better
separation amongst the single, binary, and tertiary aldehyde
odors is observed in Fig. 13(a). Particularly partitions of binary
aldehyde odors with the single and tertiary odors are more
obvious. Results again confirm minor contribution of non-MIP
QCM sensor response in analysis outcome. This point is further
verified with quantitative identification of single, binary, and
tertiary odors simultaneously using SVM classifier. For SVM
classification the PC score matrices (PCs 18�4ð Þ,PCm 108�4ð Þand
PCt 16�4ð Þ of original sensors response matrices (Fs 18�4ð Þ, Fb 108�4ð Þ

and Ft 16�4ð Þ) were combined. The binary mixtures classes are
assumed as a single class. The combined PC score matrix is divided
into training and validation sets. About 2/3rd of scores (total 95
samples: 12 from single odor class, 72 from binary mixture odor
class, and 11 from tertiary mixture odor class) were used for
training and rest 1/3rd of scores (total 47 odor samples: 6 from
single odor class, 36 from binary mixture odor class, and 5 from
tertiary mixture odor class) were used for validation of SVM model.
After tuning, for kernel function and their related parameters
optimized SVM model was used for classification (Similar to SVM
model used in Section 3.3). The class confusion matrices by
excluding, and including the response of non-MIP QCM sensor are
given in Table 4. Using the response of three MIP-QCM sensors in Ist
fold, all the aldehyde odors from the binary mixture classes are
correctly identified, however the 6 samples from the single odor
class and 5 samples from the tertiary odor class were identified to
the binary odor class (class recognition rate 76.60%). In IInd fold the
class confusion decreases, resulting identification of 39 odors
correctly to their respective class (recognition rate 82.98%. Though
maximum class confusion can be seen in the IIIrd fold, in which
only 15 samples are correctly identified. After excluding the
response of non-MIP QCM sensor from analysis result maximum
recognition rate 82.98%. Although including them in analysis, SVM
classifier results 100% recognition of odors from binary mixtures of
aldehyde, however the single and tertiary aldehyde odors have
recognition rate 76.60% only in Ist fold. In IInd and IIIrd fold 20 and

Fig. 12. Representation of tertiary mixture of aldehydes in PC space by QCM sensor array response analysis (excluding sensor-1) in (a) PC 1-PC 2 (b) PC 1-PC 3 directions, and
(including sensor-1) in (c) PC 1-PC 2, and (d) PC 1-PC 3 directions.

S.K. Jha, K. Hayashi / Talanta 134 (2015) 105–119116



34 samples are correctly identified respectively. The maximum class
recognition rate in this case is 76.60%, which is less than the
maximum class recognition rate 82.98% of previous case (excluding
the response of non-MIP QCM sensor). It is equivalent to the PCA
results in Fig. 13 (a)-(d).

Characterization result (Fig. 8, Table 1) of body odor samples
indicates the presence of organic acids, aldehydes, and ketones, etc
as the major chemical classes, due to this in our earlier study [22]
we have reported the MIP-QCM sensors for the detection of three
organic acids singly and in their mixtures. Likewise in present
study we target the identification of three aldehydes identified in
real samples of body odor in singly and in mixtures. As if we can
develop the MIP-QCM sensors for identification of chemicals from
major functional groups found in real body odor such as acid,
aldehyde, ketone in singly and in mixtures then we can also use
similar sensing system for body odor recognition in real scenario.
Since body odor is the complex composition of chemicals from
major functional groups with other interferents. In our future
study, we target identification of other major chemical classes in
body odor using the similar MIP-QCM sensing system and later on
test this system for differentiation of body odor in real scenario.

3.6. Response (adsorption) and recovery (desorption) time of sensors
to aldehyde odors

Sensors S2 and S3 are most sensitive to the aldehyde odors
(Figs. 4–6). A schematic calculation of their response time (ton) and
recovery time (toff) according to definition in Ref. [30] is given in
Fig. 14 (a)-(d). Particularly, Fig. 14 (a) represents the response of sensor
S2 to heptanal vapors (5mL in glass bottle). Full response of sensor S2 is
84.6 Hz and time required to read the 90% of full response 76.14 Hz is
(ton) 10 s. Also the time required to recover the baseline (toff) is 13 s.
Similarly Fig. 14(b)-(d) demonstrate the response of sensor S2 to
binary odor generated with hexanalþheptanal mixture (5þ5mL in
glass bottle) with response time 11 s and recovery time 12 s, response
of sensor S3 to binary odor generated with heptanalþnonanal
mixture (5þ5mL in glass bottle) with response time only 5 s and
recovery time 12 s and response of sensor S3 to tertiary odor
generated with hexanalþheptanalþnonanal (5þ5þ5mL in glass
bottle) with response time 5 s and recovery time 12 s respectively. It
is obvious that the sensor S3 response faster than the S2. Sensor
response time and recovery time depend on chemical behavior of MIP
film and target chemical molecule as well concentration of latter. We

Fig. 13. Representation of aldehydes in PC space combining three classes of binary odors into one class in PC 1-PC 2 directions with response analysis of (a) three sensors,
(b) four sensors, and using three separate classes of binary odors with response analysis of (c) three sensors, (d) four sensors.
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Fig. 14. Response time of MIP coated QCM sensor to (a) heptanal vapors (5 mL in sampling vial), (b) binary mixture of hexanal and heptanal (5þ5 mL in glass bottle), (c) binary
mixture of heptanal and nonanal (5þ5 mL in glass bottle), and (d) tertiary mixture of hexanal, Heptanal and nonanal (5þ5þ5 mL in glass bottle).

Table 4
SVM classification results for single, binary, and tertiary mixtures of aldehyde odors (assuming all the three classes of binary mixtures as a single class).

QCM sensor array response analysis

Using response of three sensors (S2, S3, S4) Using response of four sensors(S1, S2, S3, S4)

Ist fold Ist fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True class 0 6 0
36

True class 0 6 0
0 36 0 0 36 0 36
0 5 0 0 5 0

IInd fold IInd fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True Class 2 4 0
39

True Class 0 6 0
0 36 0 18 18 0 20
0 4 1 0 3 2

IIIrd fold IIIrd fold

Predicted class No. of properly identified odor Predicted class No. of properly identified odor

True Class 1 0 0
15

True Class 0 6 0
23 12 1 0 31 5 34
0 3 2 0 2 3
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hardly noticed the reported value of QCM sensor response time for
single and mixed odors of aldehydes. Though some reported values of
QCM sensor response time and recovery time for other vapors are as
follows: 48 s and 91 s for water vapor [44], 6 s and 27 s for acetic acid
vapor [48], average response time 90 s for acetone vapors [55], etc.
According to Gardener et al. [30,56] ton should be few seconds and
sum of tonþtoff should be 1-2 minutes. MIP-QCM sensors in present
study succeed to achieve this limit by which quick identification of
aldehyde odors singly, binary, and tertiary mixtures is feasible both
independently and simultaneously.

4. Conclusions

A novel acids template molecule based MIP coated QCM sensor
array has been developed for the detection of three biomarker
aldehydes in body odor. The presence of target aldehydes was
confirmed with the SPME-GC–MS analysis of real body odor
samples. The target aldehyde odors were identified in singly,
binary, and tertiary mixtures independently as well in combina-
tion. The hexanoic acid template molecule based MIP coated QCM
sensor exhibit quick response (ton¼5 s) and high selectivity and
reversibility compare to other sensors. The aldehyde odors were
effectively identified in PC space as well with SVM classifier. Future
work will be concerned to the development of aldehyde template
molecules based MIP coated QCM sensors for effective recognition
of additional saturated and branched aldehydes in their binary and
tertiary mixtures in presence of other interfering vapors.
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